Contents:
The file will be sent to your email address. It may take up to minutes before you receive it.
The file will be sent to your Kindle account. It may takes up to minutes before you received it.
Please note you've to add our email mailer bookmail. Read more. Gerd Mrozynski , Matthias Stallein auth. File: PDF, 7. Markus Zahn. Bahasa: engish. File: PDF, 2. Post a Review. You can write a book review and share your experiences. Other readers will always be interested in your opinion of the books you've read. Whether you've loved the book or not, if you give your honest and detailed thoughts then people will find new books that are right for them.
It's going to be a really large number, but let's say this-- let me pick a smaller number. Let's say this is 1 times 10 to the minus 6 coulombs, right? If that's 1 times 10 to the minus 6 coulombs, what is the electric field at that point? Let me switch colors again. What's the electric field at that point? Well, the electric field at that point is going to be equal to Coulomb's constant, which is 9 times 10 to the ninth-- times the charge generating the field-- times 1 times 10 to the minus 6 coulombs. And then we are 2 meters away, so 2 squared.
So that equals 9 times 10 to the third divided by 4. So I don't know, what is that?
Electromagnetic Field Theory: A Problem Solving Approach [Markus Zahn] on giuliettasprint.konfer.eu *FREE* shipping on qualifying offers. Develops problem solving. Often the same problem is solved by different methods so that the advantages and limitations of each approach becomes clear. Sample problems and their.
So we know that this is generating a field that when we're 2 meters away, at a radius of 2 meters, so roughly that circle around it, this is generating a field that if I were to put-- let's say I were to place a 1 coulomb charge here, the force exerted on that 1 coulomb charge is going to be equal to 1 coulomb times the electric fields, times 2, newtons per coulomb. So the coulombs cancel out, and you'll have 2, newtons, which is a lot, and that's because 1 coulomb is a very, very large charge.
And then a question you should ask yourself: If this is 1 times 10 to the negative 6 coulombs and this is 1 coulomb, in which direction will the force be? Well, they're both positive, so the force is going to be outwards, right? So let's take this notion and see if we can somehow draw an electric field around a particle, just to get an intuition of what happens when we later put a charge anywhere near the particle. So there's a couple of ways to visualize an electric field. One way to visualize it is if I have a-- let's say I have a point charge here Q.
What would be the path of a positive charge if I placed it someplace on this Q? Well, if I put a positive charge here and this Q is positive, that positive charge is just going to accelerate outward, right? It's just going to go straight out, but it's going to accelerate at an ever-slowing rate, right? Because here, when you're really close, the outward force is very strong, and then as you get further and further away, the electrostatic force from this charge becomes weaker and weaker, or you could say the field becomes weaker and weaker. But that's the path of a-- it'll just be radially outward-- of a positive test charge.
And then if I put it here, well, it would be radially outward that way. It wouldn't curve the way I drew it. It would be a straight line. I should actually use the line tool. If I did it here, it would be like that, but then I can't draw the arrows.
If I was here, it would out like that. I think you get the picture. At any point, a positive test charge would just go straight out away from our charge Q. And to some degree, one measure of-- and these are called electric field lines. And one measure of how strong the field is, is if you actually took a unit area and you saw how dense the field lines are. So here, they're relatively sparse, while if I did that same area up here-- I know it's not that obvious. I'm getting more field lines in. But actually, that's not a good way to view it because I'm covering so much area.
Let me undo both of them. You can imagine if I had a lot more lines, if I did this area, for example, in that area, I'm capturing two of these field lines.
Well, if I did that exact same area out here, I'm only capturing one of the field lines, although you could have a bunch more in between here. And that makes sense, right? Because as you get closer and closer to the source of the electric field, the charge gets stronger. Another way that you could have done this, and this would have actually more clearly shown the magnitude of the field at any point, is you could have-- you could say, OK, if that's my charge Q, you could say, well, really close, the field is strong.
So at this point, the vector, the newtons per coulomb, is that strong, that strong, that strong, that strong. We're just taking sample points. You can't possibly draw them at every single point. So at that point, that's the vector. That's the electric field vector. But then if we go a little bit further out, the vector is going to be-- it falls off.
This one should be shorter, then this one should be even shorter, right? You could pick any point and you could actually calculate the electric field vector, and the further you go out, the shorter and shorter the electric field vectors get. And so, in general, there's all sorts of things you can draw the electric fields for.
Let's say that this is a positive charge and that this is a negative charge. Let me switch colors so I don't have to erase things. If I have to draw the path of a positive test charge, it would go out radially from this charge, right? But then as it goes out, it'll start being attracted to this one the closer it gets to the negative, and then it'll curve in to the negative charge and these arrows go like this.
And if I went from here, the positive one will be repelled really strong, really strong, it'll accelerate fast and it's rate of acceleration will slow down, but then as it gets closer to the negative one, it'll speed up again, and then that would be its path. Similarly, if there was a positive test charge here, its path would be like that, right?
If it was here, its path would be like that.
If it was here, it's path would be like that. If it was there, maybe its path is like that, and at some point, its path might never get to that-- this out here might just go straight out that way. That one would just go straight out, and here, the field lines would just come in, right?
Error control coding: An introduction to linear block code. Computer Organization. Broadband Networks: Concepts and Technology. Principles and Parameters in Natural Language. Functional Analysis. Often the same problem is solved by different methods so that the advantages and limitations of each approach becomes clear.
A positive test charge would just be naturally attracted to that negative charge. So that's, in general, what electric field lines show, and we could use our little area method and see that over here, if we picked a given area, the electric field is much weaker than if we picked that same area right here. We're getting more field lines in than we do right there.
So that hopefully gives you a little sense for what an electric field is. It's really just a way of visualizing what the impact would be on a test charge if you bring it close to another charge. And hopefully, you know a little bit about Coulomb's constant. And let's just do a very simple-- I'm getting this out of the AP Physics book, but they say-- let's do a little simple problem: Calculate the static electric force between a 6 times 10 to the negative sixth coulomb charge.